Supporting information. Experimental procedures and full characterisation for compounds **3-7**.

Typical procedure for the alkylation of β -lactams 1 and 2.

β-lactam (1 mmol) was added to a solution of LiHMDS (2.5 equiv.) in THF (or Et₂O) at -78 °C (10 mL). The solution was stirred for 2 h at -78°C and MeI (4 mmol) was added. The mixture was then allowed to warm to rt. After 1 h, the reaction mixture was poured into a saturated ammonium chloride solution (10 mL) and extracted with Et₂O (3x25 mL). The combined organic extracts were washed (brine), dried (MgSO₄), and evaporated to give a residue that was purified by chromatography on silica gel (petrol ether-AcOEt, 70:30).

Cis-3-(benzyloxy)-1-(4-methoxyphenyl)-3-methyl-4-(trifluoromethyl)-2-azetanone (3) : 340 mg. (93 %), m.p. = 110 °C.

¹⁹F NMR δ -68.1 (d, $^{3}J_{HF}$ = 6.1 Hz).

¹H NMR δ 1.6 (s, 3 H, CH₃), 3.6 (s, 3H, OCH₃), 4.2 (q, ${}^{3}J_{HF} = 5.8$ Hz, 1 H, CH-CF₃), 4.8 (dd, ${}^{2}J_{AB} = 11.3$ Hz, 2 H, CH_AH_B-C₆H₅), 6.8 (m, 4H, C₆H₄), 7.2 (m, 5 H, C₆H₅).

¹³C NMR δ 19.5, 55.5, 63.9 (q, ${}^{2}J_{CF}$ = 31 Hz, *C*H-CF₃), 68.8, 86.8, 114.5, 119.8, 124.3 (q, ${}^{1}J_{CF}$ = 300 Hz, CF₃), 127.2, 127.7, 128.4, 129.5, 137.6, 157.4, 165.6.

Anal. Calcd for $C_{19}H_{19}O_3NF_3$: C, 62.46; H, 4.96; N, 3.83. Found : C, 62.39; H, 5.01; N, 3.75.

(3*S*,4*R*)-3-(benzyloxy)-3-methyl-1-[(1*S*)-1-phenethyl]-4-(trifluoromethyl)-2-azetanone (4) : 330 mg. (90 %), m.p. = 88 °C; $[\alpha]_D = +20$.

¹⁹F NMR δ -69.1 (d, $^{3}J_{HF}$ = 5.8 Hz).

¹H NMR δ 1.4 (s, 3 H, C H_3), 1.6 (d, J = 7 Hz, 3H, CH_3), 3.3 (q, $^3J_{HF} = 6.4$ Hz, 1 H, CH-CF₃), 4.8 (dd, $^2J_{AB} = 14$ Hz, 2 H, C H_AH_B -C₆H₅), 5.2 (q, J = 7 Hz, 1H), 7.2-7.4 (m, 10 H, C₆H₅).

¹³C NMR δ 17.5, 18.5, 27.9, 42.9, 51.1, 62.1 (q, $^2J_{CF}$ = 31 Hz, CH-CF₃), 62.7, 68.8, 127.1 (q, $^1J_{CF}$ = 300 Hz, CF₃), 127.3, 127.6, 128.3, 128.4, 128.9, 137.7, 168.

Anal. Calcd for $C_{19}H_{18}O_3NF_3$: C, 66.1;H, 5.56; N, 3.86. Found: C, 65.97; H, 5.58; N, 3.78.

Typical procedure for the Wittig rearrangements of β -lactams 1 and 2.

β-lactam (1 mmol) was added to a solution of LiHMDS (2.5 equiv.) in THF (or Et₂O) at -78 °C (10 mL). The solution was stirred for 2 h at -78°C and then allowed to warm to rt. After 1 h, the reaction mixture was poured into a saturated ammonium chloride solution (10 mL) and extracted with Et₂O (3x25 mL). The combined organic

extracts were washed (brine), dried (MgSO₄), and evaporated to give a residue that was purified by chromatography on silica gel (petrol ether-AcOEt, 70:30).

Cis-3-(benzyl)-3-(hydroxy)-1-(4-methoxyphenyl)-4-(trifluoromethyl)-2-azetanone (5) : 230 mg (65 %), m.p. = 92 °C.

¹⁹F NMR δ -68.6 (d, ³ J_{HF} = 5.8 Hz).

¹H NMR δ 1.7 (br s, 1 H, O*H*), 3.2 (dd, ${}^2J_{AB}$ = 14 Hz, 2 H, C*H*_A*H*_B-C₆H₅), 3.8 (s, 3 H, OC*H*₃), 4.3 (q, ${}^3J_{HF}$ = 6 Hz, 1 H, C*H*-CF₃), 6.8 and 7.1 (dd, J_{AB} = 9 Hz, 4 H, C₆H₄), 7.35 (m, 5 H, C₆H₅).

¹³C NMR δ 41.4, 55.5, 61.6 (q, $^2J_{\rm CF}$ = 31 Hz, *C*H-CF₃), 85.7, 114.4, 120.3, 124.8 (q, $^1J_{\rm CF}$ = 300 Hz, CF₃), 127.8, 128.6, 128.9, 130.0, 133.3, 157.5, 167.0.

Anal. Calcd for $C_{18}H_{16}O_3NF_3$: C, 61.54; H, 4.59; N, 3.99. Found: C, 61.53; H, 4.49; N, 3.93.

 β -Lactams 6 and 7: (60/40), 227 mg (65%).

(3R,4R)-3-benzyl-3-hydroxy-1-[(1S)-1-phenethyl]-4-(trifluoromethyl)-2-azetanone (6) : m.p. = 140 °C; $[\alpha]_D = +22.1$.

¹⁹F NMR δ -69.3 (d, $^{3}J_{HF}$ = 6.3 Hz).

¹H NMR δ 1.5 (d, J = 7.2 Hz, 3 H, CH_3 -CH-C₆H₅), 3.1 (dd, $^2J_{AB} = 14$ Hz, 2 H, CH_AH_B -C₆H₅), 3.2 (s, 1 H, OH), 3.6 (q, $^3J_{HF} = 6.3$ Hz, 1 H, CH-CF₃), 4.8 (q, $^3J = 7.2$ Hz, 1 H, CH-CH₃), 6.9 (m, 2 H, C₆H₅), 7.2 to 7.4 (m, 8 H, C₆H₅).

¹³C NMR δ 18.0, 41.0, 52.0, 59.5 (q, ${}^{2}J_{CF}$ = 30 Hz, *C*H-CF₃), 86.0, (CF₃ no observed), 127.0, 130.0, 130.5, 133.5, 137.5, 169.0.

Anal. Calcd for $C_{19}H_{18}O_2NF_3$: C, 65.32; H, 5.19; N, 4.00. Found: C, 65.31; H, 5.37; N, 3.93.

(3*R*,4*R*)-3-hydroxy-3-(2-methylbenzyl)-1-[(1*S*)-1-phenethyl]-4-(trifluoromethyl)-2-azetanone (7): m.p. = 104 °C; $[\alpha]_D = +62.7$.

¹⁹F NMR δ -67.9 (d, ³ J_{HF} = 5.9 Hz).

¹H NMR δ 1.7 (d, J = 7.2 Hz, 3 H, CH_3 -CH-C₆H₅), 2.4 (s, 3 H, CH₃-C₆H₄), 3.7 (br s, 1 H, OH), 3.85 (q, ${}^3J_{\rm HF} = 6.0$ Hz, 1 H, CH-CF₃), 5.0 (q, ${}^3J = 7.2$ Hz, 1 H, CH-CH₃), 7.14 (t, J = 7.5 Hz, 1H, Ar), 7.2 to 7.3 (m, 7 H, Ar), 7.5 (d, J = 7.7 Hz, 1H, Ar).

¹³C NMR δ 18.5, 19.8, 52.8, 63.7 (q, ${}^2J_{\text{CF}}$ = 30 Hz, CH-CF₃), 87.3, 123.9 (q, ${}^1J_{\text{CF}}$ = 276 Hz, CF₃), 126.0, 127.0, 127.2, 128.1, 128.7, 129.5, 132.4, 135.0, 137.5, 138.0, 169.0.

Anal. Calcd for $C_{19}H_{16}O_2NF_3$: C, 65.32; H, 5.19; N, 4.00. Found : C, 65.24; H, 5.35; N, 3.90.